[1] A. Bener, E. Yildirim, T. Özkan, T. Lajunen, Driver sleepiness, fatigue, careless behavior and risk of motor vehicle crash and injury: Population based case and control study, Journal of Traffic and Transportation engineering (English edition), 4(5) (2017) 496-502.
[2] S. Reinhold, C. Laesser, D. Bazzi, The intellectual structure of transportation management research: A review of the literature, in, University of St. Gallen St. Gallen, 2015.
[3] R.D. Guide, American Association of State Highway and Transportation Officials, Washington, DC, (1996).
[4] S. Al-Sultan, A.H. Al-Bayatti, H. Zedan, Context-aware driver behavior detection system in intelligent transportation systems, IEEE transactions on vehicular technology, 62(9) (2013) 4264-4275.
[5] E.E. Galarza, F.D. Egas, F.M. Silva, P.M. Velasco, E.D. Galarza, Real time driver drowsiness detection based on driver’s face image behavior using a system of human computer interaction implemented in a smartphone, in: Proceedings of the International Conference on Information Technology & Systems (ICITS 2018), Springer, 2018, pp. 563-572.
[6] M. Shahverdy, M. Fathy, R. Berangi, M. Sabokrou, Driver behavior detection and classification using deep convolutional neural networks, Expert Systems with Applications, 149 (2020) 113240.
[7] J. Wang, K. Li, X.-Y. Lu, Effect of human factors on driver behavior, in: Advances in Intelligent Vehicles, Elsevier, 2014, pp. 111-157.
[8] Z. Xiao, F. Li, R. Wu, H. Jiang, Y. Hu, J. Ren, C. Cai, A. Iyengar, TrajData: On vehicle trajectory collection with commodity plug-and-play OBU devices, IEEE Internet of Things Journal, 7(9) (2020) 9066-9079.
[9] X. Liu, J. Biagioni, J. Eriksson, Y. Wang, G. Forman, Y. Zhu, Mining large-scale, sparse GPS traces for map inference: comparison of approaches, in: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, 2012, pp. 669-677.
[10] S. Tanwar, S. Tyagi, S. Kumar, The role of internet of things and smart grid for the development of a smart city, in: Intelligent Communication and Computational Technologies: Proceedings of Internet of Things for Technological Development, IoT4TD 2017, Springer, 2018, pp. 23-33.
[11] V. Chauhan, M. Patel, S. Tanwar, S. Tyagi, N. Kumar, IoT Enabled real-Time urban transport management system, Computers & Electrical Engineering, 86 (2020) 106746.
[12] J. Masino, J. Thumm, M. Frey, F. Gauterin, Learning from the crowd: Road infrastructure monitoring system, Journal of Traffic and Transportation Engineering (English Edition), 4(5) (2017) 451-463.
[13] K.W. Wevers, M.L. Lu, R. van der Heijden Heijden, Technical feasibility of advanced driver assistance systems (ADAS) for road traffic safety, (2005).
[14] Q. Li, F. Qiao, X. Wang, L. Yu, Drivers' smart advisory system improves driving performance at STOP sign intersections, Journal of traffic and transportation engineering (English edition), 4(3) (2017) 262-271.
[15] D. Sunehra, K. Jhansi, Implementation of microcontroller based driver assistance and vehicle safety monitoring system, in: 2015 International Conference on Information Processing (ICIP), IEEE, 2015, pp. 423-428.
[16] A. Ziebinski, R. Cupek, D. Grzechca, L. Chruszczyk, Review of advanced driver assistance systems (ADAS), in: AIP Conference Proceedings, AIP Publishing, 2017.
[17] M.J. Carrillo, Robotic cars test platform for connected and automated vehicles, University of California, Irvine, 2015.
[18] A. Shaout, D. Colella, S. Awad, Advanced driver assistance systems-past, present and future, in: 2011 Seventh International Computer Engineering Conference (ICENCO'2011), IEEE, 2011, pp. 72-82.
[19] U. Hofmann, A. Rieder, E.D. Dickmanns, Radar and vision data fusion for hybrid adaptive cruise control on highways, Machine Vision and Applications, 14 (2003) 42-49.
[20] A. Kesting, M. Treiber, M. Schönhof, D. Helbing, Adaptive cruise control design for active congestion avoidance, Transportation Research Part C: Emerging Technologies, 16(6) (2008) 668-683.
[21] S. Cafiso, A. Di Graziano, G. Pappalardo, In-vehicle stereo vision system for identification of traffic conflicts between bus and pedestrian, Journal of traffic and transportation engineering (English edition), 4(1) (2017) 3-13.
[22] C. Ilas, Electronic sensing technologies for autonomous ground vehicles: A review, in: 2013 8th International Symposium on Advanced Topics in Electrical Engineering (ATEE), IEEE, 2013, pp. 1-6.
[23] B.-G. Lee, W.-Y. Chung, A smartphone-based driver safety monitoring system using data fusion, Sensors, 12(12) (2012) 17536-17552.
[24] J. Carmona, F. García, D. Martín, A. de la Escalera, J.M. Armingol, Data fusion for driver behaviour analysis, Sensors, 15(10) (2015) 25968-25991.
[25] J. Yu, Z. Chen, Y. Zhu, Y. Chen, L. Kong, M. Li, Fine-grained abnormal driving behaviors detection and identification with smartphones, IEEE transactions on mobile computing, 16(8) (2016) 2198-2212.
[26] S. Siuhi, J. Mwakalonge, Opportunities and challenges of smart mobile applications in transportation, Journal of traffic and transportation engineering (english edition), 3(6) (2016) 582-592.
[27] G.M. Fitch, K. Grove, R.J. Hanowski, M.A. Perez, Compensatory behavior of drivers when conversing on a cell phone: Investigation with naturalistic driving data, Transportation research record, 2434(1) (2014) 1-8.
[28] M.M. Haque, S. Washington, The impact of mobile phone distraction on the braking behaviour of young drivers: a hazard-based duration model, Transportation research part C: emerging technologies, 50 (2015) 13-27.
[29] W.J. Horrey, M.F. Lesch, M.J. Dainoff, M.M. Robertson, Y.I. Noy, On-board safety monitoring systems for driving: review, knowledge gaps, and framework, Journal of safety research, 43(1) (2012) 49-58.
[30] W. Consiglio, P. Driscoll, M. Witte, W.P. Berg, Effect of cellular telephone conversations and other potential interference on reaction time in a braking response, Accident Analysis & Prevention, 35(4) (2003) 495-500.
[31] S.G. Klauer, F. Guo, B.G. Simons-Morton, M.C. Ouimet, S.E. Lee, T.A. Dingus, Distracted driving and risk of road crashes among novice and experienced drivers, New England journal of medicine, 370(1) (2014) 54-59.
[32] T.A. Dingus, F. Guo, S. Lee, J.F. Antin, M. Perez, M. Buchanan-King, J. Hankey, Driver crash risk factors and prevalence evaluation using naturalistic driving data, Proceedings of the National Academy of Sciences, 113(10) (2016) 2636-2641.
[33] V. Havyarimana, D. Hanyurwimfura, P. Nsengiyumva, Z. Xiao, A novel hybrid approach based-SRG model for vehicle position prediction in multi-GPS outage conditions, Information Fusion, 41 (2018) 1-8.
[34] H. Ahmed, I. Ullah, U. Khan, M.B. Qureshi, S. Manzoor, N. Muhammad, M.U. Shahid Khan, R. Nawaz, Adaptive filtering on GPS-aided MEMS-IMU for optimal estimation of ground vehicle trajectory, Sensors, 19(24) (2019) 5357.
[35] T. Driessen, L.L.B. Prasad, P. Bazilinskyy, J. de Winter, Identifying Lane Changes Automatically using the GPS Sensors of Portable Devices, Human Factors in Transportation, 60 (2022) 50.
[36] S. Stieger, D. Lewetz, U.-D. Reips, Can smartphones be used to bring computer-based tasks from the lab to the field? A mobile experience-sampling method study about the pace of life, Behavior Research Methods, 50 (2018) 2267-2275.
[37] A. Fani, H. Naseri, Travel Time Modelling of Urban Roads By Application of Coyote Optimization-based Machine Learning Method, Amirkabir Journal of Civil Engineering, 53(9) (2021) 3649-3664.
[38] S. Ranjbar, F. Moghadas Nejad, H. Zakeri, Asphalt Pavement Bleeding Evaluation using Deep Learning and Wavelet Transform, Amirkabir Journal of Civil Engineering, 53(11) (2022) 4577-4598.
[39] P.S. Bokare, A.K. Maurya, Acceleration-deceleration behaviour of various vehicle types, Transportation research procedia, 25 (2017) 4733-4749.